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Special Functions for Engineers

Abstract. Well established special functions are an important tool to expand analyt-
ical methods in many engineering applications. Unfortunately, they have fallen out of
fashion in engineering educational programs and are mainly replaced by direct numer-
ical computations. But since they simplify the analysis of many practical problems,
they should find a place again in engineering curricula. This claim is substantiated by
examples from fluid mechanics, production planning, mechanics and vibration theory,

employing the Lambert W function, the error function, elliptic and Bessel functions.

Introduction

The standard mathematical education of engineering students is usually
divided into two different parts: In the first three semesters they learn ba-
sic concepts and calculation techniques from linear algebra, analysis and
ordinary differential equations, and immediately apply them in mechanics,
electrical engineering and vibration theory. The focus is on manual com-
putations, using parameters to solve general problems and find optimal
values. In the second part they come in touch with “real-world” problems
and find that manual computations don’t work anymore. This is the time
for topics such as numerical mathematics, modeling and simulation and fi-
nite element computations. Now, parameter studies are done numerically,
optimization often becomes a major numerical task. Usually missing in the
curriculum are strategies to extend analytical methods, which can make
parameter studies and optimization much simpler.

A conceptionally easy way to extend the computation capabilities is
the introduction of special functions, which are well-known in applications
and whose properties have been extensively studied [I]. This notion has
no formal definition, some authors use the hypergeometric series or special
classes of differential equations as unifying criterion [2]. We will stick here
to the general consensus, including non-elementary functions that have
proven their value in applications. Though many of them have interesting
properties, when extended to the complex numbers, we will concentrate
on real functions here.
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In the following, we will use four different methods to define new
function on R: as inverse functions, antiderivatives, definite integrals with
parameters or solutions of ordinary differential equations. Of course there
are a lot of other possibilities, e.g. power series or integral transforms. In
each case, we will shortly present an application problem, then introduce
the special function needed, study some of its properties, and finally show,
how to solve the original problem using them.

Inverse Functions

The first example is a standard problem in basic fluid mechanics lectures
[3]: Given a horizontal pipe of length [ = 2 km, diameter d = 0.5 m and
surface roughness £ = 0.1 mm that is used to transport a volume flow
V = 1200 m?/h of hot water of 85 °C. Compute the pressure loss Ap in

the pipe. Following the standard procedure leads to an apparently simple
equation that can’t be solved analytically.

2 T T

Figure 1: Lambert W function.

The Lambert W function is the upper branch of the inverse of

f(z) = ze* for x > —1/e (cf. Fig. [I)). It is sometimes denoted as W,
while the lower branch is named W_;.
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Amongst its many useful properties are (for suitable x, a)

re'=a = x=W(a)

chzr=a = z=¢"
. N ~ Ina
v x_W(lna)
Wi(z)
o) —
W = W)

/W(x) iz — 2 (W(m) 14 Wl(x)> e

They are summarized in [4], together with many of its applications. In
Matlab it is defined directly as lambertw(x), the negative branch as
lambertw(-1, x).

Its applications span a lot of different areas, e. g. explicit solutions
of some quantenmechanical systems, the kinetics of enzyme-catalysed re-
actions, crystal growth, solutions of the Einstein vacuum equations or the
SIR equations of epidemiology. [5] even argues that due to its rich math-
ematical structure and abundant applications, it should be included in
the set of elementary functions and taught at secondary or tertiary school
levels.

Using the W function, the solution of the introductory example pro-
ceeds as follows: First one gets the temperature-dependent values of the
density p and the kinematic viscosity v from water tables and computes
the dimensionless quantities

Re = ﬂi = i
v Tdv
k

krel:E

Next, one computes the Darcy friction factor A by solving the Coleman
equation

1 2 | 251 1 L krel
= — n .
Jr  In10  \Re v\ ' 37

To this end one introduces = 1/v/A and some obvious abbreviations to
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write 1t as
r = —cln(ax +b).

A bit of simple algebra leads to

b
T b s b Eue
__|__ ¢c ac —
C ac ac

with the solution

) b
ch(e >——
ac a

leading to the numerical value

A =0.01415.

Finally the pressure loss is computed as

e
Ap—Ad2w = 0.7900 bar .

Antiderivatives

The second example is concerned with first steps in production process
planning: In a manufacturing process, resistors of R = 47 k{2 must be
produced. They should belong to the norm series E12, i. e. the resis-
tance R may not deviate from the specified value by more than 10%. The
values actually produced are normally distributed with E(X) = 47 kQ
and o(X) = 3 k. Calculate the percentage of resistors produced that
are in the permissable range. The mathematical problem is, of course, to
compute the antiderivative of f(z) = e *".

The error function is defined as

2 T
erf(z) := ﬁ/o e " dt

(cf. Fig. [2)). Since a basic course in stochastics is now standard in engi-
neering curricula, this function is actually known to the students, together
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Figure 2: Error function.

with its basic properties

erf(—x) = —erf(z)
erf(0) =0
lim erf(x) =1

T—00
In Matlab it is given as erf (x), and its complement by erfc(x) = 1 - erf(x).

Related functions are the Fresnel integrals
S(z) = / sin 2 dt

0 2
C(x) = / cos 2 dt,

0 2

which can be reduced to the error function of complex arguments.

As a consequence of the central limit theorem, the error function
appears in lots of statistics applications. A variant is the Maxwell distri-
bution function of molecule velocities in an ideal gas. Furthermore, it is
important for the computation of heat conduction phenomena, since it is
the fundamental solution of the heat equation. The Fresnel integrals de-
scribe the scattering of light around obstacles in the near-field region and
— a bit surprisingly — optimal curves for motorway exits [6].
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Exercise 2 is a standard example in stochastics: The distribution of
the resistance values is given by

X ~ N(47,9),
the percentage is
p=P0.9-47 < X <1.1-47).

Normalizing with

X —p
N g

Z

~ N(0,1)

then leads to

Definite Integrals

The third exercise is a standard mechanics example: Given a mathematical
pendulum of length [ = 1 m, calculate the oscillation period for the initial
values

po = 10°/90°/175°, ¢y = 0.

The difficult mathematical problem here is the computation of a definite
integral with a parameter.

The complete elliptic integral of the first kind is defined as

/2
Kmy:/ W e
0 \/1—msin219

(cf. Fig.[3). It has a lot of interesting properties, amongst them

mng K(1) = 0o
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K(m) = g <1+ <%)2m+ (%)Qmﬂ...)
Kom = | T

In Matlab it can be calculated with ellipke(m).
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Figure 3: Complete elliptic integral of the first kind.

K belongs to the important family of elliptic integrals

/ R(z, /P(2)) dz.

where P(x) is a polynomial of degree 3 or 4 (with 3 or 4 differ-
ent roots to exclude “trivial” cases) and R(z,y) is a non-trivial ratio-
nal function of its two arguments. An important special case is the
incomplete elliptic integral of the first kind

“ 1
F(u,m) = /0 NGO dt

with the connection

K(m) = F(1,m).
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The inverse of F as function of u is called Jacobi elliptic function sn, it can
be considered as a generalization of a harmonic function using a special
nonlinear restoring force [7].

The elliptic integrals and elliptic functions play a prominent role in
mathematics [§]: One of their first appearances was in the computation of
the arc length of the ellipse (hence their name). In complex function theory,
elliptic functions are defined as meromorphic, doubly periodic functions,
with a deep connection to the elliptic integrals. They are the starting
point of modern developments from elliptic curves to modular forms up
to the proof of Fermat’s theorem. They even provide an explicit solution
of the quintic equation. They appear in many applications, such as the
trajectory of the mathematical pendulum, the form of a skipping rope, the
description of soliton waves or even in cryptography (ok, this needs a few
further steps from here).

The solution of exercise 3 starts with the equation of motion
¢+ w?sing =0

with

Multiplying with ¢ and integrating (or simply by energy conservation) one
gets

¢? = 2w?(cos p — cos py)

Integration from 0 to 7'/4 leads to

T—2\/§/% d
 w Jy Jcosg —cosgy

The — not so obvious — substitution

in £
Sll’l2

in £o
st

sinu =
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leads to

4 [T/? d
T:—/ ¢ .
W Jo \/1 —siHQ%siHQU

Introducing the oscillation period T} for very small initial ¢

2
Ty = _7T7
w

one finally gets

2T
T = —OK (sin2 ﬂ) )
T 2

Numerically the results for the different initial conditions are:
©0 T |T;f0|
10° | 2.0521 | 0.0229
90° | 2.6640 | 0.3280
175° 1 6.2141 | 2.0977

Obviously, the usual approximation sin ¢ =~ ¢ for small initial an-
gles, leading to T' = T, is completely wrong for values approaching 180°:
The pole of K(m) at m = 1 corresponds to the — unstable — equilibrium
point at ¢y = 7.

Differential Equations

The final example is a standard problem from vibration theory: Given a
circular membrane with wave speed ¢ that is fixed at radius rg, calculate
the frequencies of the first 10 vibration modes. ¢ can be computed from
membrane properties such as elasticity and density and the tension forces
applied to the membrane. Solving the wave equation for a circular geom-
etry leads to an ordinary differential equation with solutions that cannot
be expressed with elementary functions.

The Bessel equation is defined by

2" xf + (2 —mPf =0
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for m = 0,1,2,... and positive x. For given m, the equation has two
linearly independent solutions J,, and Y,,, the Bessel functions of the first
and second kind, where J,,,(0) is finite, whereas Y,, has a pole at 0 (cf.
Fig. 4)). They have infinitely many zeros, which will be denoted by j, .
and yp,, forn=1,2,....
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Figure 4: Bessel functions.

The Bessel functions satisfy the recurrence relations

2m
7Jm(l') — Jm_1($) + Jm+1($)
2J (2) = Jp_1(x) — Jpy1(2)
and the orthogonality relation [9]

dv _ 2 sin (5(m —n))

| nt@rinte)

x T m2—n?

For large x they are approximately harmonic

2
Jm(x)%\/%cos(x—g—%), x> 1.

In Matlab values of the Bessel functions can be calculated with besselj (m,x)
and bessely(m,x). Their zeros can be computed with fzero, but a much
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faster and more reliable function besselzero is available at the MATLAB
Central File Exchange [10].

Closely related functions are the Hankel functions, which are com-
plex linear combinations of .J,, and Y,,. Furthermore, solutions of the
Bessel equations are studied for arbitrary (non-integer) values of m. Es-
pecially useful in applications are the solutions with half-integer m, the
spherical Bessel functions.

The Bessel functions appear in all kinds of physical applications with
cylindrical symmetry, e. g. electromagnetic waves in a waveguide, heat
conduction, wave functions in quantum mechanics or diffraction through
an aperture. In corresponding situations with spherical symmetry, the
spherical Bessel functions are similarly useful.

To solve exercise 4, one starts by writing the two-dimensional wave
equation using polar coordinates:

1 1

1
uTvr' + ;uT —l_ uso(p — g’dtt.

2
For the computation of eigen modes, one assumes a harmonic time be-
haviour and a separation of space variables:

u(r, o, t) = f(r)g(p) cos(wt)
= g(p) = Acos(mp + o), m=0,1,2,...

Introducing k := w/c and changing the variable from r to z := k7, one
gets the Bessel equation for f(z). Certainly, the vibration must be finite
at r = 0, therefore the J,, are the only solutions. Since the membrane is
fixed at the circle r = ry, we have

Jm(k 7nO) - 07

giving eigen frequencies at
C .
W= —"Jmn-
To

A table of zeros j,,, form =0...5and n = 1...4 provides enough values
to find the ten lowest modes and corresponding frequencies:
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#2.40 | *5.52 | *8.65 | 11.79
#3.83 | *7.02 | 10.17 | 13.32
*5.14 | *8.42 | 11.62 | 14.80
*6.38 | 9.76 | 13.02 | 16.22
*7.59 | 11.06 | 14.37 | 17.62
*8.77 1 12.34 | 15.70 | 18.98

Cﬂ'-lkwl\')r—‘OB

Conclusions

Special functions play an important role in many applications, especially,
but not confined to electrical and mechanical engineering, physics and
statistics. Consequently, their definitions and properties should be in-
cluded in engineering curricula. A standard mathematics course in analy-
sis and differential equations seems to be an appropriate place to include
this topic. But since the time is already too short to cover the basic mate-
rial, this seems unfeasible in practice. In a non-systematic fashion, special
functions could be included as examples or in homework exercises. But
it would probably be better to integrate them into application courses as
soon as they are needed.

Of course, special functions are an interesting topic for mathemati-
cians as well: They provide lots of important examples, allow to extend
tools from analysis and often are starting points for complete new ar-
eas. The general tendency to teach mathematics by starting with abstract
notions often leaves students without a proper understanding of the mo-
tivation behind the definitions. Topics like special functions can provide
a basis for later abstraction and a feeling for the many interconnections
between seemingly unrelated areas of mathematics.

Unfortunately, special functions have fallen out of fashion in teaching
engineering students and are often replaced by numerical methods. This
can have severe consequences, e. g. when optimization with many param-
eters is done directly using complex and computationally intense numeri-
cal methods, where applying analytical methods could lead to much faster
and more reliable computations. Hopefully, the explicit examples provided
here have shown that special functions deserve a renaissance, not only for
practical purposes, but in the spirit of Hammings famous motto:

The purpose of computing is insight, not numbers. [I1]
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