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Abstract. The simulation of transport processes,
though inherently continuous, is often done in a
discrete-event simulation environment. In the case of
conveyors for dry bulk material, this can lead to mod-
eling difficulties, especially regarding the coupling of
two conveyors with different velocities. We will present
a modeling approach solving such problems, describe
an implementation in SimEvents and present results of
systematic tests.

Introduction
In the simulation of production and logistic processes,
the modeling of materials handling is of paramount im-
portance. Though the detailed description of a transport
process uses continuous functions of time, such as po-
sitions or mass flows, in the context of a complex simu-
lation it is often simplified and modeled using only dis-
crete events. But this reduction of complexity can lead
to problems, because:

It is often important to model such entity
transfer accurately since studies have shown
that delays and inefficiencies in operations
might be caused more by the need just to
move things around rather than in actually do-
ing the work. [1, p.345]

A simple conveyor belt moving discrete unit loads
with constant velocity generally can be modeled easily
enough. But building an adequate model for the trans-
port of dry bulk material with a wide range of granular-
ity and changing velocities of one belt or between belts
is much more difficult.

Modifying the belt velocity is a standard method to
adapt to a varying input mass flow. This can be used
to utilise the full capacity of the conveyor at a lower
speed, which will often decrease the power consump-
tion [2], or to speed up in order to shorten the trans-
portation time. On the other hand, when transporting
damageable goods like apples or potatoes, one could try
to slow down the conveyor to guarantee a high quality
of the goods.

In the following we will describe a discrete-event
model of a conveyor for dry bulk material, which has
a control input to change the velocity. A special focus
will be on the coupling of conveyors running with dif-
ferent velocities, since this leads to modeling problems
in a discrete environment. Finally the model will be im-
plemented in SimEvents from Mathworks [3] and tested
systematically.

The acceleration or deceleration of a highly loaded
conveyor creates considerable tension in the belt, lead-
ing to local stretching or even breaking of the belt [4].
In this study we will neglect this effect and treat the belt
as a rigid body with the same velocity everywhere.

1 Modeling of a Single Conveyor
A discrete-event model of a conveyor has to implement
the delays of the incoming entities given by the con-
veyor length l and the velocity v. In addition it has to
store the positions of all entities at the current (discrete)
time in order to cope with entities of varying size lE or
with a time-dependent velocity (cf. Figure 1).

Such a component exists in many commercial
discrete simulation environments such as Arena [1],
SimEvents [3] or PlantSimulation [5]. The length of
the entities can either be defined as a fixed parameter
or as an entity-specific attribute. The various programs
have different additional features like a minimal dis-
tance between entities, accumulation of entities in case
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Figure 1: Simple conveyor model.

of blocking or incorporating acceleration phases at the 
beginning – all of which will not be considered in the 
following. Another difference is the exact procedure, 
how an entity enters (or leaves) the conveyor. For con-
creteness we will define that a (right-going) entity starts 
at position x = 0 with its left edge coinciding with the 
left edge of the conveyor, and leaves at position x = l, 
when its left edge coincides with the right edge of the 
conveyor.

For the transportation of dry bulk material the sit-
uation is a bit more complicated, because there are no 
easily identifiable e ntities a nd t he t ransport p rocess is 
inherently continuous: Due to a usually non-uniform 
production process and the inhomogeneity of the mate-
rial the conveyor is filled with an incoming mass flow
ṁ in(t), which leads to a line load λ := ∂

∂ x
m given by

λ (t,x) =
1
v

ṁin(t −
x
v
) (1)

for a constant velocity v (cf. Figure 2).

(t, x)λ
m (t)

in

v

x

Figure 2: Conveyor model for bulk dry material.

The granularity of dry bulk material varies widely 
in practical applications, ranging from almost micro-
scopic particles (powder) over small or medium sized 
particles (rice, apples) to large lumps (ore). The model-
ing methods used vary accordingly. Two extreme meth-
ods are described and compared in [6]: the microscopic 
description, where the movement of each particle is de-
scribed separately, and a macroscopic representation, 
using a mass density and differential equations describ-
ing the conservation laws.

Both methods are computationally intensive, there-
fore in [7] a “mesoscopic” approach has been utilised,
which is well suited for medium sized granularity and
can be easily incorporated into standard discrete mod-
eling environments. Basically, the continuous line load
is replaced by discrete entities Ei with mass mi given by

mi =
∫ i∆t

(i−1)∆t
ṁin(t)dt, i ∈ N+

for an arbitrary fixed time interval ∆t. Using (1) one
gets for constant velocity v:

mi = v
∫ i∆t

(i−1)∆t
λ (i∆t,v(i∆t − t))dt

=
∫ v∆t

0
λ (i∆t,x)dx

This shows that the conveyor is divided into compart-
ments of equal length lE = v∆t. For simplicity, one of-
ten chooses lE = l/N for N ∈N+, so that entity Ei enters
the conveyor at time i∆t, i. e. when its compartment is
filled, and leaves at (N + i)∆t.

An alternative approach could be to use compart-
ments of equal mass instead of equal length. This
would lead to a more complex timing of events, which
makes the interpretation of results more involved. Fur-
thermore, some simulation environments (e. g. Arena)
use conveyor components with a fixed cell size, which
would make the implementation of this approach quite
ugly.

2 Coupling of Conveyors with
Different Velocities

We will now analyse how one can combine two sin-
gle conveyors with lengths l1, l2 and velocities v1, v2.
A mathematical description of the continuous process
with additional input and output reservoirs at the end of
each conveyor has been given in [8]. Considering only
the case of constant (but different) velocities, one has:

λ1(t,x) =
1
v1

ṁin,1(t −
x
v1
)

λ2(t,x) =
1
v2

ṁin,2(t −
x
v2
)
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Connecting the conveyors directly, the output of
conveyor 1 is the input of conveyor 2, therefore:

ṁin,2(t) = v1λ1(t, l1)

⇒ λ2(t,x) =
v1

v2
λ1(t −

x
v2
, l1)

For a continuous model one simply changes the line
load λ2 by the factor v1/v2. This happens automati-
cally in real life, when the bulk material gets thinned
out or condensed on the second conveyor – as long as
the capacity of the second belt is not exceeded.

But our discrete model runs into problems with the
timing of the entities: Conveyor 1 sends entities at time
intervals ∆t1 = lE,1/v1 to the entrance of conveyor 2,
which in turn delivers entities at its output at generally
different time intervals ∆t2 = lE,2/v2. Therefore one
cannot maintain the idea of an entity defined as a fixed
set of particles with given mass. Instead one identifies
an entity with the content of a given compartment on a
conveyor. Such a compartment is created and filled at
the entrance of a conveyor, and emptied and destroyed
at its exit.

The remaining task is now to compute the mass of
such a newly created entity. According to the ratio

k :=
∆t2
∆t1

=
lE,2
lE,1

· v1

v2

one needs different strategies, how to cope with this
problem. Such strategies should fulfil two require-
ments:

• mass conservation, i. e. incoming and outgoing
masses should balance on a short time scale,

• homogeneity, i. e. the output mass distribution
should closely follow the input mass values. For
a constant incoming distribution this means, that
the outgoing values shouldn’t vary much.

If k is integer, one simply adds up the masses of k
incoming entities to create an outgoing one, whereas if
1/k is integer, one distributes the mass of one incoming
entity among 1/k outgoing entities. In all other cases
one has to account for the unbalanced timing of input
and output entities. Since the problem appears only at
the connection of the two conveyors, we can concen-
trate on the second conveyor with its incoming values
min,i at times i∆t1 and the corresponding outgoing val-
ues mout, j at times j∆t2, disregarding the delay time of
the second conveyor.

If k > 1 one can apply a simple collection strat-
egy using a virtual bin, which accumulates all incoming
masses into macc. A new output entity then empties the
bin and gets the total accumulated mass. Table 1 shows
how this works in an example with equal entity lengths
lE,1 = lE,2 = 1m, velocities v1 = 2.5m/s , v2 = 1m/s
and constant incoming masses mi = 1kg.

i j t min macc mout
1 - 0.4 1 1 -
2 - 0.8 1 2 -
- 1 1.0 - 0 2
3 - 1.2 1 1 -
4 - 1.6 1 2 -
5 2 2.0 1 0 3
6 - 2.4 1 1 -

Table 1: Times and masses for example 1 (k = 2.5).

For k < 1 one has to use a partition strategy instead. The 
following strategy “A” defines the mass of a partition as

mp = k min

each time a new entity enters, and sets outgoing entities 
accordingly. This simple scheme leads to a problem 
due to the timing, as can be seen in Table 2, which uses 
v1 = 1m/s , v2 = 1/0.35m/s : At t = 1.75 there is not 
enough mass available for the outgoing entity E5. But 
this can be cured easily by setting

mout = min(mp,macc)

Unfortunately strategy A has a serious drawback, as Ta-
ble 3 shows using v1 = 1m/s , v2 = 1/0.8m/s : Though 
the mean ratio of input entities to output entities is 0.8, 
for a while the actual ratio is 1. Therefore the accumu-
lated mass macc, which is just the difference between 
total input and total output mass, grows.

i j t min mp macc mout
1 - 1.0 1 0.35 1 -
- 3 1.05 - 0.65 0.35
- 4 1.4 - 0.3 0.35
- 5 1.75 - 0 0.30
2 - 2.0 1 0.35 1 -

Table 2: Times and masses for example 2 (k = 0.35).
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This is in conflict with the primary goal of mass con-
servation on a short time scale. Even worse: When the
following input entities are empty (i. e. min = 0), mp is
set to 0 and the accumulated mass stays in the internal
bin.

i j t min mp macc mout
1 - 1.0 1 0.8 1 -
- 2 1.6 - 0.2 0.8
2 - 2.0 1 0.8 1.2 -
- 3 2.4 - 0.4 0.8
3 - 3.0 1 0.8 1.4 -
- 4 3.2 - 0.6 0.8

Table 3: Times and masses for example 3 (k = 0.8), strategy A.

Strategy “B” tries to solve this problem by changing the 
value of the partition mass to

mp = k macc,

where the value is only computed, when an input entity 
arrives. This will distribute the surplus value of macc 
among the next outgoing entities, thereby reducing the 
total mass imbalance, as can be seen in Table 4 for the 
values of example 3.

i j t min mp macc mout
1 - 1.0 1 0.800 1.000 -
- 2 1.6 - 0.200 0.800
2 - 2.0 1 0.960 1.200 -
- 3 2.4 - 0.240 0.960
3 - 3.0 1 0.992 1.240 -
- 4 3.2 - 0.248 0.992

Table 4: Times and masses for example 3 (k = 0.8), strategy B.

We will finally provide a mathematical description
of the distribution strategy B to clarify possible open
points and to guide the implementation. Starting point
are the two positive time intervals ∆t1, ∆t2 = k ∆t1 be-
tween arrival or departure of entities at the virtual con-
necting bin and the positive end time tend of the simula-
tion. We now define the sets

Tin = {i∆t1 | i ∈ N+} ∩ [0, tend ]

Tout = { j ∆t2 | j ∈ N+} ∩ [0, tend ]

The function min(t) is given for t ∈ Tin (by a production
process) and constant elsewhere.

The functions macc, mp and mout will be defined
on Tin ∪ Tout , they are constant elsewhere. For
simplicity we denote

f (t−) := f (t − ε) (ε > 0 sufficiently small),

where “sufficiently small” means “smaller than the size
of any open time interval from Tin ∪Tout”. We now start
with

macc(0) = 0 kg

and define:

mp(t) =

{
k (macc(t−)+min(t)) | t ∈ Tin

const. |otherwise

mout(t) =


min(mp(t),macc(t−)) | t ∈ Tout \Tin

min(mp(t),macc(t−)+min(t))| t ∈ Tin ∩Tout

const. |otherwise

macc(t) =



macc(t−)+min(t) | t ∈ Tin \Tout

macc(t−)−mout(t) | t ∈ Tout \Tin

macc(t−)+min(t)−mout(t)| t ∈ Tin ∩Tout

const. |otherwise

One easily checks that these definitions reproduce the
collection strategy and partition strategy B. Strategy A
is a bit simpler and can be easily defined in a similar
way.

3 Implementation in SimEvents
SimEvents [9] is a blockset for the Simulink envi-
ronment from Mathworks [10] that enables discrete
event modeling. It uses the transaction-based approach,
which describes entities that are handled by fixed com-
ponents. It contains the usual components like an entity
generator, a server, a queue and several routing blocks.
As stated above, a basic Conveyor System compo-
nent is available that transports discrete entities of given
length. Many components include so-called “action”-
functions, which are called at the entry or exit of an en-
tity, and can be defined using Simulink function blocks.

The conveyor for dry bulk material (cf. Figure 3) is
defined as a component with an input and output port
for the entities, inputs for the incoming and outgoing
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Figure 3: Conveyor model.

velocities and an additional output to display the enti-
ties leaving the internal bin. The length lE of the com-
partments and the total length l are provided as param-
eters. Incoming and outgoing entities have attributes 
describing their length and their mass. The block uses 
the predefined C onveyor System and a component 
RefillBins that handles the adaptation of the differ-
ent velocities.

Figure 4: Implementation of the RefillBins component.

The central block RefillBins (cf. Figure 4) im-
plements the formulae described in section 2 that de-
fine strategy B. Incoming entities are routed through a 
server, which calls the Simulink functions totalMass 
to compute macc and setPartialMass to compute 
mp, and destroyed afterwards. An internal generator 
creates new entities at times in Tout and sends them to 
a server that sets the mass attribute to mout , which is 
computed with the function compMass. Before an en-
tity leaves the block, a copy is created and sent back to

the input server, so that its mass can be subtracted from
macc. The alternative strategy A can be implemented
easily in an analogous way.

As usual for transaction-based modeling, one has to
make sure that concurrent events are handled in the cor-
rect order to make things work. If t ∈ Tin ∩ Tout , this
means that the incoming entity has to be processed be-
fore the internally created one to guarantee the correct
computation of mp and mout . For this purpose enti-
ties enter the conveyor with a high priority (low value),
while the internal generator creates entities with low
priority, which is raised, when an entity leaves the con-
veyor.

A more subtle timing problem has lead to the inclu-
sion of the server getValue behind the internal gen-
erator: In principle the call of the function compMass
could have been done immediately inside the genera-
tor. But then the order of the mass computation and the
processing of a concurrent incoming entity are not de-
fined! The priority only affects events and messages,
not internal function calls.

4 Test Results
To compare the performance of the strategies A and B
in detail, a set of tests have been carried out that con-
centrate on two key figures: the mean value over time
macc of the internally accumulated mass, which shows
the short-time mass conservation, and the standard de-
viation σout of the output mass, which measures the ho-
mogeneity of the outgoing mass distribution.

All tests use constant entity lengths lE,1 = lE,2 = 1m
and outgoing velocity v2 = 1m/s . The input velocity
is given as v1 = k v2, where different values of k and
different input mass distributions will be analysed. All
results are compiled in Table 5 and are referenced by
their number in the following.

The first group (1 – 9) consists of tests with constant
input mass mi = 1kg and varying k. For k or 1/k in-
teger, optimal procedures have been given in section 2,
which lead to a constant output mass, i. e. σ = 0. For
these cases the average value of macc can easily be com-
puted to be

macc =
n−1

2n
| n ≡ 1/k ∈ N+

macc =
n−1

2
| n ≡ k ∈ N+
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Test results 1 – 4 show that both implementations repro-
duce these values, minor differences are due to a short
initial period.
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Figure 5: Test result 6, constant input, k = 0.8.

Results for other values of k are shown in tests 5 – 9, 
among them the examples from section 2. The plots in 
Figure 5 display the function macc(t) and the conveyor 
output over time for both strategies, they reproduce the 
results for k = 0.8 from Tables 3 and 4. The figures from 
Table 5, no. 6, show that the mass balance of strategy B 
is better by a factor of 1.5 than that of strategy A.
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Figure 6: Test result 8, constant input, k = 2.45.

Very instructive is the comparison of tests 8 and 9: 
Changing k from 2.5 to 2.45 leads to a much worse 
local mass balance, especially for strategy A.

The reason for this behaviour can be seen in Fig-
ure 6: The accumulated mass rises slowly over fast
cycles of 2 s, but is reset with a longer period of 20 s.
A look at Table 1 shows that for k = 2.5 a much shorter
period of 5 s appears, so that macc can’t grow as much.
The length of the period is given by the representation
k = p/q with coprime natural numbers p, q:

k =
p
q
=

∆t2
∆t1

⇒ q∆t2 = p∆t1,

where ∆t2 = 1s in all our tests. A rational k with a large
denominator therefore leads to a long period, which can
possibly produce a long time accumulation and a bad
mass balance. The problem is less severe for strategy
B, since it gets rid of short time accumulations as fast
as possible.
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Figure 7: Test result 14, uniform input, k = 2.5.

In real applications the input flow is usually not con-
stant, at least it fluctuates due to the granularity of the 
material. To model this, the next tests (10 – 14) take 
mass input values mi(t) using a uniform distribution on 
the interval [0.9, 1.1] kg, which has a standard deviation 
of σin = 0.058 kg.

The corresponding results in Table 5 are generally 
similar to the previous ones, but the standard deviations 
seem to be too small, they are sometimes smaller than 
σin. This is due to two effects: Firstly, the mean value of 
the output mass is not 1, but k, and σout has to be scaled 
accordingly. Secondly, the internal accumulation pro-
cess smoothes the incoming values, thereby reducing 
the standard deviation.
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A striking result is the mass balance of strategy A in
test 14 (k = 2.5), which is much larger than expected.
Figure 7 shows that the accumulation of rest masses,
which was limited before due to the periodic behaviour,
now grows apparently unbounded.
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Figure 8: Test result 19, falling input, k = 2.5.

For the last tests a macroscopic change has been 
added to the small scale fluctuations: In tests 15 –  19 
the mean value of the input mass is reduced by a factor 
two in the middle of the measurement, in tests 20 – 24 
it is doubled.

If one takes the changing mass scale into account, 
the results are similar to the last ones. It is interesting 
to note, what happens to the previous problematic case 
k = 2.5: As can be seen in Figure 8 the accumulation 
of “residual mass” continues, even if the mean value 
drops. The same happens, if the mean value rises (cf. 
Table 5, no. 24).

5 Conclusion
We have presented a simple discrete event-based model 
of a conveyor system for the transport of dry bulk 
material, which allows for the coupling of conveyors 
with different velocities. Two strategies have been 
compared to cope with the timing problems, where 
strategy B is much better, if the short time mass balance 
is of highest concern, while strategy A provides a better 
homogeneity of the outgoing masses.

No. k macc(A) macc(B) σout(A) σout(B)
[kg] [kg] [kg] [kg]

1 0.33 0.3300 0.3300 0.0000 0.0000
2 0.14 0.4243 0.4243 0.0000 0.0000
3 3.00 1.0000 1.0000 0.0000 0.0000
4 7.00 3.0000 3.0000 0.0000 0.0000
5 0.35 0.5315 0.4460 0.0145 0.0394
6 0.80 0.6644 0.4555 0.0000 0.2930
7 1.20 0.8429 0.5000 0.0672 0.3966
8 2.45 1.5315 1.1300 0.1106 0.5040
9 2.50 1.1714 0.9143 0.0884 0.5080

10 0.35 0.5331 0.4440 0.0241 0.0386
11 0.80 0.6825 0.4499 0.0455 0.2933
12 1.20 0.8351 0.4933 0.0867 0.3948
13 2.45 1.3826 1.1141 0.1690 0.4864
14 2.50 1.8598 0.9123 0.1552 0.5136
15 0.35 0.4111 0.3237 0.0875 0.0929
16 0.80 0.6621 0.3391 0.2048 0.3075
17 1.20 0.6865 0.3629 0.2910 0.4185
18 2.45 1.1876 0.8426 0.5983 0.6979
19 2.50 1.5818 0.6838 0.6132 0.7500
20 0.35 0.8212 0.6846 0.1764 0.1809
21 0.80 0.9939 0.6715 0.4006 0.5983
22 1.20 1.3305 0.7239 0.6296 0.9080
23 2.45 2.0568 1.6572 1.2454 1.4854
24 2.50 2.4205 1.3695 1.2898 1.5003

Table 5: Test results comparing mass conservation and
homogeneity of both strategies.

While discretisation of continuous systems is impor-
tant to reduce computation times drastically, it creates
problems of its own. To solve them, a precise mathe-
matical description is of uttermost importance, not only
to precisely define the model, but also to guide and
thereby simplify the implementation process. A typ-
ical implementation problem, which had to be solved
here, was to ensure the correct ordering of concurrent
events. While using priorities is a standard way to cope
with it, one had to dig deeply into internal features of
SimEvents to come up with a final solution. Since such
details vary between different simulation environments
[11], a precise (mathematical!) definition of the exact
behaviour of SimEvents would have been helpful.

Though the model has shown its principle validity in
a series of tests, the real proof of its usefulness would
be seen in the integration with a controller.
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The coupling with a continuous controller should
work in principle, but for several reasons – practical as
well as theoretical –, a discrete controller with a finite
set of velocities would be more adequate in a lot of ap-
plications [12, 13].

Whether the simple strategies proposed here are use-
ful in such a context, or whether one needs more com-
plex strategies, which are adapted to the controller al-
gorithm, is a question for future research.
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